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Abstract
We calculate exactly the partition function Z(G,Q, v) of the Q-state Potts
model with temperature-like Boltzmann variable v for strip graphs G of the
square and triangular lattices of various widths Ly and arbitrarily great lengths
Lx , with a variety of boundary conditions, and with Q and v restricted to
satisfy conditions corresponding to the ferromagnetic phase transition on the
associated two-dimensional lattices. From these calculations, in the limit
Lx → ∞, we determine the continuous accumulation loci B of the partition
function zeros in the v and Q planes. Strips of the honeycomb lattice are also
considered. We discuss some general features of these loci.

PACS numbers: 05.20.−y, 64.60.Cn, 75.10.Hk

1. Introduction

The Q-state Potts model has served as a valuable model for the study of phase transitions and
critical phenomena [1–3]. In this paper we study the zeros of the Q-state Potts model partition
function on lattice strip graphs of fixed width Ly and arbitrarily great length Lx , with Q and
the temperature-like variable v restricted to satisfy the condition for the ferromagnetic phase
transition on the associated two-dimensional lattice. From these calculations, in the limit
Lx → ∞, we exactly determine the continuous accumulation loci B of the partition function
zeros in the v and Q planes.

We begin by briefly recalling the definition of the model and some relevant notation. On
a graph G at temperature T, the Potts model is defined by the partition function:

Z(G,Q, v) =
∑
{σ }

exp


K

∑
〈ij〉

δσiσj


 , (1)

where σi = 1, . . . , Q are the classical spin variables on each vertex (site) i ∈ G, 〈ij 〉 denotes
pairs of adjacent vertices, K = βJ where β = (kBT )−1 and J is the spin–spin coupling.
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We define v = eK − 1, so that v has the physical range of values 0 � v � ∞ and −1 � v � 0
for the respective ferromagnetic and antiferromagnetic cases J > 0 and J < 0. The graph
G = G(V,E) is defined by its vertex set V and its edge (bond) set E. The number of vertices
of G is denoted as n = n(G) = |V | and the number of edges of G as e(G) = |E|. The Potts
model can be generalized from non-negative integer Q and physical v to real and, indeed,
complex Q and v via the cluster relation [16, 17] Z(G,Q, v) = ∑

G′⊆G Qk(G′)ve(G′), where
G′ = (V ,E′) with E′ ⊆ E, and k(G′) denotes the number of connected components of G′.

Although the infinite-length, finite-width strips that we consider here are quasi-one-
dimensional systems and the free energy is analytic for all nonzero temperatures, it is
nevertheless of interest to investigate the properties of the Potts model with the variables
Q and v restricted to satisfy the above conditions. There are several reasons for this. First, for
an Ly × Lx section of the respective type of lattice, as Lx → ∞ and Ly → ∞ with Ly/Lx

equal to a finite nonzero constant, one sees the onset of two-dimensional critical behaviour.
Thus, the strips with Lx → ∞ and Ly fixed provide a type of interpolation between the
one-dimensional line and the usual two-dimensional thermodynamic limit as Ly increases.
Second, one can obtain exact results for the partition function Z(G,Q, v) and (reduced) free
energy f = limn→∞ n−1 ln Z. The value of such exact results is clear since it has not so
far been possible to solve exactly for f (�,Q, v) for arbitrary Q and v on a lattice � with
dimensionality d � 2, and the only exact solution for arbitrary v is for the d = 2 Ising case
Q = 2. Hence, exact results on the model for infinite-length, finite-width strips complement
the standard set of approximate methods that are used for d � 2, such as series expansions and
Monte Carlo simulations. Although the singular locus Bv does not intersect the real axis on
the physical finite-temperature interval −1 < v < ∞ for the infinite-length, finite-width strips
under consideration here, properties of the corresponding locus BQ, can give insight into the
corresponding locus BQ for the respective two-dimensional lattices. This type of connection
was shown to hold in our earlier studies, which focused on the singular locus B of the Potts
model free energy in the v plane for fixed Q or in the Q plane for fixed v. For example, in [4]
and [5] we obtained exact solutions for Z(G,Q, v) for arbitrary Q and v on strips of the square
lattice with widths Ly = 2 and Ly = 3, respectively, and from these solutions we determined
the corresponding loci B in the limit of infinite length. It was shown in [4] and [5] that for
the Ising case Q = 2, on these strips with periodic longitudinal boundary conditions, the loci
Bv contain the points v = −1 ± i (as multiple points in the sense of algebraic geometry).
This property is the same as is true of the analogous locus for the Ising model on the (infinite)
square lattice, which is the union of the circles |v| = √

2 and |v + 2| = √
2 [6]. Similarly, in

[7] and [8] we showed that the corresponding loci Bv for infinite-length strips of the triangular
and honeycomb lattices with width Ly = 2 again contain these points v = −1± i (as multiple
points), the same as is true of the analogous loci for the Ising model on the triangular and
honeycomb lattices [9, 10].

These correspondences were also evident for the locus BQ for fixed v. For example,
consider the special case v = −1 where the Potts model partition function is equal to the
chromatic polynomial counting the number of ways of assigning Q colours to the vertices of a
graph, subject to the constraint that no adjacent vertices have the same colour. The ground state
degeneracy per site, W({G},Q) = limn→∞ Z(G,Q,−1)1/n (where {G} denotes the formal
limit of the graph G as n → ∞), has a different analytic behaviour for Q > Qc and Q < Qc,
where the critical value, Qc, is the maximal point where BQ crosses the positive real axis
[11]. Using new exact solutions for W({G},Q), we showed in [12] that for cyclic self-dual
strips of the square lattice, Qc = 3, exactly the same as the value for the infinite square lattice
[13]. This was also true for the Ly = 3 strip of the square lattice with toroidal or Klein bottle
boundary conditions [14]. As these examples show, the properties of the singular loci Bv
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for fixed Q and BQ of the Potts model free energy for fixed v calculated for infinite-length,
finite-width strips can exhibit certain properties in common with the analogous loci on the
corresponding (infinite) two-dimensional lattices. Indeed, one of the interesting results of the
present work is the key role of the point Q = 4 for the locus BQ, which makes a connection
with the locus BQ for the physical phase transition of the Potts model on two-dimensional
lattices. We recall that the ferromagnetic phase transition of the 2D Potts model is continuous
(second order) for 0 � Q � 4 and first order for Q > 4.

The above-mentioned loci are determined by the equality in magnitude of the eigenvalues
of the transfer matrix of the model with maximal modulus and hence are also called the set of
equimodular curves (where ‘curve’ is used in a general sense that also includes line segments).
A similar study has been carried out for a special set of strips of the square lattice, namely
those with an exact self-duality property [15]. It is of considerable interest to investigate which
features of the loci of zeros found in that special case depend on the self-duality and which are
more general. Here we study and answer this question using strips of the square, triangular
and honeycomb lattices with a variety of different boundary conditions.

The Potts model partition function is equivalent to an important function in mathematical
graph theory, the Tutte polynomial T (G, x, y) [18–21]:

Z(G,Q, v) = (x − 1)k(G)(y − 1)n(G)T (G, x, y), (2)

where

x = 1 +
Q

v
, y = 1 + v. (3)

The phase transition temperatures of the ferromagnetic Potts model (in the thermodynamic
limit) on the square (sq), triangular (t) and honeycomb (hc) lattices are given, respectively, by
the physical solutions to the equations [1]

Q = v2 (sq) (4)

Q = v2(v + 3) (t) (5)

and

Q2 + 3Qv − v3 = 0 (hc). (6)

Conditions (5) and (6) are equivalent, owing to the duality of the triangular and honeycomb
lattices. In terms of the Tutte variables, these conditions are (y − 1)(x − y) = 0 for
� = sq, (y − 1)(y2 + y − x − 1) = 0 for � = t and (y − 1)2(x2 + x − y − 1) = 0
for � = hc. Since y = 1 means K = 0, i.e., infinite temperature, the root at y = 1 is not
relevant; dividing both sides of these three equations by the appropriate powers of (y − 1), we
thus obtain the conditions x = y (sq), y2 + y − x − 1 = 0 (t) and x2 + x − y − 1 = 0 (hc).

We next describe the boundary conditions that we consider. The longitudinal and
transverse directions of the lattice strip are taken to be horizontal (in the x direction) and
vertical (in the y direction). The boundary conditions that are free, periodic and periodic
with reversed orientation of sites on the transverse boundary slice are labelled as F,P and
T P (where T stands for ‘twisted’). We consider strips with the following types of boundary
conditions:

(i) (FBCy, FBCx) = free
(ii) (FBCy, PBCx) = cyclic (cyc)

(iii) (FBCy, T PBCx) = Möbius (Mb)
(iv) (PBCy, FBCx) = cylindrical (cyl)
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(v) (PBCy, PBCx) = toroidal (tor)
(vi) (PBCy, T PBCx) = Klein bottle (Kb).

We thus denote a strip graph of a given type of lattice � = sq or t as �[Ly × Lx], BC, where
BC = free for (FBCy, FBCx) and similarly for the other boundary conditions. In earlier
work we showed that although the partition functions Z(�[Ly × Lx], BC,Q, v) are different
for cyclic and Möbius boundary conditions, B is the same for these two, and separately that
although this partition function is different for toroidal and Klein-bottle boundary conditions,
B is the same for these two latter conditions [4], [5–8]. Therefore, we shall focus here on the
cases of free, cyclic, cylindrical and toroidal boundary conditions.

Our procedure for calculating Z(G,Q, v) on these strips is as follows. For the square and
triangular lattices, equations (4) and (5) have the simplifying feature that they have the form
Q = g�(v), where g�(v) is a polynomial in v. Accordingly, to restrict Q and v to satisfy
the phase transition conditions for the respective two-dimensional lattices, we start with the
exact partition function and replace Q by g�(v) for � = sq and � = t . We then solve for
the zeros of Z(G, g�(v), v) and, in the Lx → ∞ limit, the continuous accumulation loci Bv

in the complex v plane. The image of these zeros and loci under the respective mappings (4)
and (5) yield the zeros and loci in the complex Q plane. In the case of the honeycomb (hc)
lattice, the ferromagnetic phase transition condition (6) is nonlinear in both v and Q. Since it
is of lower degree in Q, we solve for this variable, obtaining Q = (v/2)(−3 ± √

9 + 4v). Of
course, only one of these solutions is physical for the actual two-dimensional lattice, namely
the one with the plus sign. Given the fact that the triangular and honeycomb lattices are dual
to each other and the consequence that properties of the phase transition of the ferromagnetic
Potts model on the triangular lattice are simply related to those on the honeycomb lattice,
it follows that, insofar as we are interested in applying our exact results on infinite-length,
finite-width strips to two dimensions, it suffices to concentrate on strips of either the triangular
or honeycomb lattice. Since condition (5) is easier to implement than the solution for Q on the
honeycomb lattice, we shall mainly focus on strips of the triangular lattice, but also include
some comments on honeycomb-lattice strips.

We denote the Tutte–Beraha numbers [19–23]:

Qr = 4 cos2(π/r). (7)

For the range of interest here, 1 � r � ∞, we note that Qr monotonically decreases from 4
to 0 as r increases from 1 to 2, and then Qr increases monotonically from 0 to 4 as r increases
from 2 to ∞. For our analysis of strips of the square lattice, it will also be useful to denote
vr = −2 cos(π/r) so that Qr = v2

r . Further background is given in [15].

2. Some general structural properties

For these strips, the partition function has the general form (with Lx = m)

Z(�[Ly × m], BC,Q, v) =
∑

j

cj (λ�,BC,Ly,j )
m, (8)

where the coefficients cj are independent of m. It will be convenient to separate out a power
of v and write

λ�,BC,Ly,j = vLy λ̄�,BC,Ly,j . (9)

We denote cyclic strips of the lattice � of width Ly and length Lx ≡ m as �[Ly ×m], cyc.
The partition function has the general form [24–26]

Z(�[Ly × m], cyc,Q, v) =
Ly∑

d=0

c(d)

nZ(Ly,d)∑
j=1

(λ�,Ly,d,j )
m, (10)
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where we use simplified notation by setting λ�,cyc,Ly ,d,j ≡ λ�,Ly,d,j and λ̄�,cyc,Ly ,d,j ≡
λ̄�,Ly,d,j , and where

nZ(Ly, d) = (2d + 1)

(Ly + d + 1)

(
2Ly

Ly − d

)
(11)

for 0 � d � Ly and zero otherwise, and

c(d) =
d∑

j=0

(−1)j
(

2d − j

j

)
Qd−j . (12)

The first few of these coefficients are c(0) = 1, c(1) = Q − 1, c(2) = Q2 − 3Q + 1 and
c(3) = Q3 −5Q2 +6Q−1. The form (10) applies for cyclic strips of not just the square lattice,
but also the triangular and honeycomb lattices [8, 26]. The total number of eigenvalues is

NZ,Ly,λ =
Ly∑

d=0

nZ(Ly, d) =
(

2Ly

Ly

)
. (13)

Since nZ(Ly, Ly) = 1, i.e., there is only a single λ�,Ly,d,j for d = Ly , we denote it simply as
λ�,Ly,Ly

. The single reduced eigenvalue with d = Ly is

λ̄�,Ly,Ly
= 1. (14)

We now proceed with our results. We shall point out relevant features for the widths that
we consider; of course, it is possible to study larger widths, but, as our discussion will show,
relevant features are already present for the widths that we consider.

3. Strips of the square lattice

3.1. Free strips

We denote these strips as sq[Ly × m], free. For Ly = 1, an elementary calculation yields
Z = Q(Q + v)m−1. Setting Q = v2 yields

Z(sq[1 × m], free, v2, v) = vm+1(v + 1)m−1, (15)

which has zeros only at the two discrete points v = 0 and v = −1. In this case the continuous
B degenerates to these two points.

For Ly = 2, we use the partition function Z(sq[2 × m], free,Q, v), calculated in [4],
which has the form (8) with two λs. For Q = v2, we find

λ̄sq,2,0,j = 1
2 [(v + 2)2 ± (v4 + 4v3 + 12v2 + 20v + 12)1/2], (16)

where j = 1, 2 correspond to ±. In the infinite-length limit, the continuous accumulation
set of loci Bv and, correspondingly, BQ are shown in figures 1 and 2. They consist of two
complex-conjugate arcs that intersect each other and cross the real v axis at v = −2 and
equivalently, the real Q axis at Q = 4. The endpoint of these arcs in the v plane occurs at
the roots of the polynomial in the square root of λ̄sq,2,0,j , namely v = −1.33 ± 0.23i and
−0.67 ± 2.48i, and hence Q = 1.71 ± 0.61i and Q = −5.71 ± 3.34i. For comparison,
in this and other figures we show zeros of the partition function for long finite strips; in this
case, m = 40. One sees that the zeros lie rather close to the asymptotic loci B and that the
density of zeros increases as one approaches the endpoints of the arcs.

In these figures and others shown below, there are also zeros of the partition function that
do not lie on the asymptotic accumulation loci. For example, in general, for any graph G,
the cluster relation given above shows that Z(G,Q, v) = 0 at the point (Q, v) = (0, 0),
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0
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Im(v)

–3 –2 –1 1 2

Re(v)

Figure 1. Locus Bv for the Potts model on a 2 × ∞ strip of the square lattice with free boundary
conditions and with Q and v satisfying (4). Partition function zeros are shown for a 2 × 40 strip.
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Im(Q)
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Re(Q)

Figure 2. Locus BQ for the Potts model on a 2 × ∞ strip of the square lattice with free boundary
conditions and with Q and v satisfying (4). Partition function zeros are shown for a 2 × 40 strip.

which lies on manifolds defined by all of equations (4)–(6). Depending on the type of lattice
strip graph, this may or may not be an isolated zero or lie on the continuous accumulation
set of zeros, B. For example, for the Ly = 2 square-lattice strips with free or cylindrical
boundary conditions it is isolated (cf figures 1–3), while for the Ly = 2 strips with cyclic or
toroidal boundary conditions, it lies on the loci B in the v and Q planes (cf figures 4–6) and
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similarly for the triangular strips to be discussed below. Another general result is that for a
graph G with at least one edge, Z(G,Q, v) = 0 at the point (Q, v) = (1,−1). This follows
because Z(G,Q,−1), the partition function for the zero-temperature Potts antiferromagnet,
is precisely the chromatic polynomial P(G,Q), which counts the number of ways one can
assign colours from a set of Q colours to the vertices of G, subject to the condition that no two
adjacent vertices have the same colour. These are called proper colourings of G. Clearly, the
number of these proper colourings of a graph G vanishes if it has at least one edge and there is
only one colour, i.e., if Q = 1. This point (Q, v) = (1,−1) is on the manifold defined by (4)
for the square lattice (although not on the corresponding manifolds defined by equations (5)
and (6) for the triangular and honeycomb lattices). Thus, one sees a zero at this point in the
plots for the square-lattice strips. In the cases we have studied, this zero is isolated.

For Ly = 3, we use the exact calculation of Z(sq[3 × m], free,Q, v) for general Q and
v in [5] and specialize to Q = v2. The partition function depends on (mth powers of) four
eigenvalues which are roots of a quartic equation ((A.8) in [5]). In the limit Lx → ∞,Bv

consists of complex-conjugate pairs of arcs, all of which pass through the point v = −2,
where all four roots of the above quartic equation are degenerate in magnitude. The arcs lying
farthest from the real axis cross the imaginary v axis (at v 
 ±2.96i). Hence, the image of
this locus under the map Q = v2 in the Q plane, BQ, also consists of complex-conjugate arcs
which all pass through the point Q = 4. Furthermore, two of these cross the negative real Q
axis, so that BQ separates the Q plane into regions. There are also other zeros on the negative
real v axis, and hence resultant zeros on the positive real Q axis. Using the calculations of
Z(sq[Ly × m], free,Q, v) in [27, 28], we have performed the corresponding analyses for
Ly = 4, 5 and found similar features.

3.2. Cylindrical strip

We find that Z(sq[2 × m], cyl, v2, v) has the form (8) depending on two λ̄s, which are

λ̄sqcyl,j = 1
2

[
3v2 + 8v + 6 ± (v + 2)

√
5v2 + 12v + 8

]
, (17)

where j = 1, 2 correspond to ± and sqcyl refers to this type of strip. In the limit m → ∞, the
locus Bv consists of a self-conjugate arc that crosses the real axis at v = −2 and has endpoints
at the roots of the polynomial in the square root in (17), namely, v = (−6 ± 2i)/5. Thus, BQ

consists of an arc that crosses the real axis at Q = 4 and has endpoints at Q = (32 ± 24i)/25.
The locus BQ and partition function zeros for a long finite strip are shown in figure 3. As was
the case with the free strips, the density of zeros increases as one approaches the endpoints
of the arcs.

3.3. Cyclic and Möbius strips

For Ly = 1, sq[1 × m] is just the circuit graph with m vertices, Cm. An elementary
calculation yields Z(Cm,Q, v) = (Q + v)m + c(1)vm, so for Q = v2, one has λ̄sq,1,0 = v + 1
and λ̄sq,1,1 = 1 as in (14), and

Z(Cm, v2, v) = vm(v + 1)[(v + 1)m−1 + v − 1]. (18)

The resultant locus Bv is the circle |v + 1| = 1, i.e.,

v = −1 + eiφ, 0 � φ � 2π, (19)

which crosses the real v axis at v = 0 and v = −2. The resultant locus BQ with Q = v2 is
given by

Re(Q) = 2 cos φ(cos φ − 1), Im(Q) = 2 sin φ(cos φ − 1) (20)
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Figure 3. Locus BQ for the Potts model on a 2 × ∞ strip of the square lattice with cylindrical
boundary conditions and with Q and v satisfying (4). Partition function zeros are shown for a
cylindrical 2 × 40 strip.

for 0 � φ � 2π . This locus crosses the real Q axis at Q = Q2 = 0, where it has a cusp, and
at Q = Q1 = Q∞ = 4; it also crosses the imaginary Q axis at Q = ±2i. The loci Bv and
BQ divide the respective v and Q planes each into two regions. In the v plane these can be
labelled as R1 and R2, the exterior and interior of the circle |v + 1| = 1, and similarly in the
Q plane the exterior and interior of the closed curve given by (20). In regions R1 and R2 the
dominant λ̄s are λ̄sq,1,0 and λ̄sq,1,1, respectively.

For Ly = 2, we use the calculation of Z(sq[2 × m], cyc,Q, v) in [4]. From (11) we
have nZ(2, 0) = 2 and nZ(2, 1) = 3, together with nZ(2, 2) = 1, for a total of NZ,2,λ = 6.
Specializing to the manifold of (4), we find that

λ̄sq,2,1,1 = 1 + v (21)

λ̄sq,2,1,j = v + 2 ±
√

2v + 3, (22)

where j = 2, 3 correspond to ± and λ̄sq,2,0,j , given by (16).
For m → ∞, the locus Bv for this cyclic (or corresponding Möbius) strip, shown in

figure 4, is comprised of a single closed curve that intersects the real v axis at v = 0 and
v = −√

2 and in a two-fold multiple point at v = −2. The image of Bv in the q plane, BQ,
shown in figure 5, is again a closed curve that crosses the real Q axis once at Q = 0 and Q = 2
and in a two-fold multiple point at Q = 4, separating the complex Q plane into three regions
in 1–1 correspondence with those in the v plane. These regions are

• R1, containing the real intervals v > 0 and v < −2 and extending outwards to the circle
at infinity, and its image in the Q plane, containing the real intervals Q � 4 and Q � 0,
in which (with appropriate choice of the branch cut for the square root in (16)) λ̄sq,2,0,1 is
dominant,

• R2, containing the real interval −√
2 � v � 0, and its image in the Q plane containing

the real interval 0 � Q � 2, in which λ̄sq,2,1,2 is dominant,
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Figure 4. Locus Bv for the Potts model on a 2 × ∞ cyclic or Möbius strip of the square lattice
with Q and v satisfying (4). Partition function zeros are shown for a cyclic 2 × 40 strip.
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Figure 5. Locus BQ for the Potts model on a 2 × ∞ cyclic or Möbius strip of the square lattice
with Q and v satisfying (4). Partition function zeros are shown for a cyclic 2 × 40 strip.

• R3, containing the real interval −2 � v � −√
2 and its image in the Q plane, containing

the real interval 2 � Q � 4, in which λ̄sq,2,2 = 1 is dominant.

As was the case for the cyclic Ly = 1 strip, the curve BQ has a cusp at Q = 0. For
comparison with the asymptotic loci, in figures 4 and 5 we also show partition function zeros
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calculated for a long finite strip, with m = 40. One sees that these lie close to the respective
loci B.

The exact calculation of Z(sq[3 ×m], cyc,Q, v) in [5] has the form of (10) with Ly = 3.
From (11) we have nZ(3, 0) = 5 and nZ(3, 1) = 9, nZ(3, 2) = 5, together with nZ(3, 3) = 1,
for a total of NZ,3,λ = 20. We specialize to the manifold in (4). Owing to the large number of
λ̄sq,3,d,j s, we do not list them here. In the m → ∞ limit, we find that Bv crosses the real v

axis at v = v2 = 0, v = v4 = −√
2, v = v6 = −√

3, and v = −2, enclosing several regions
in the v plane. The image locus under the map (4), BQ, crosses the real axis in the interval
0 � Q � 4 at Q = Q2 = 0,Q = Q4 = 2,Q = Q6 = 3, and Q = 4. It also crosses the
negative real axis at two points corresponding to the two pairs of complex-conjugate points
away from v = 0 at which Bv crosses the imaginary axis in the v plane. As with the Ly = 1
and Ly = 2 cyclic strips, the curves on BQ and Bv separate the respective v and Q planes into
several regions in which different λ̄sq,3,d,j s are dominant.

We have performed corresponding calculations for the cyclic and Möbius strips of the
square lattice with Ly = 4 and Ly = 5. For brevity, we only comment on BQ here. We
find that BQ crosses the real axis in the interval 0 � Q � 4 at Q = 4 and at Q = Q2� for
integer 1 � � � Ly and also on the negative real axis. The outermost complex-conjugate
curves on BQ continue the trend observed, for smaller widths, of moving farther away from the
origin. For example, the outermost curves on BQ cross the imaginary Q axis at Q = ±2i for
Ly = 1,Q 
 ±8.5i for Ly = 2, and at progressively larger values for larger Ly . Similarly, this
outermost curve crosses the negative real axis farther away from the origin; the approximate
crossing point for Ly = 3 is at Q 
 −10, with larger negative values for Ly = 4, 5.

3.4. Toroidal and Klein bottle

The exact solution for the partition function on the Ly = 2 strip with toroidal boundary
conditions which we obtained in [5] has the form of (8) with six λs. Setting Q = v2 (and
using the abbreviation sqtor to indicate the boundary conditions), we find

λ̄sqtor,2,j = λ̄sqcyl,2,j , (23)

where λ̄sqcyl,2,j with j = 1, 2 were given above in (17),

λ̄sqtor,2,j = 1
2 [(v + 2)(v + 3) ± [(v2 + 3v + 8 + 4

√
2)(v2 + 3v + 8 − 4

√
2)]1/2], (24)

where j = 3, 4 correspond to the ± signs,

λ̄sqtor,2,5 = v + 1, (25)

and

λ̄sqtor,2,6 = 1. (26)

In the m → ∞ limit of this strip with toroidal or Klein-bottle boundary conditions, we
find that Bv intersects the real v axis at v = 0, v = −√

2 and v = −2. The image curve
BQ, shown in figure 6, thus intersects the real axis at Q = 0, 2, 4. These curves divide
the respective v and Q planes into three regions. In the v plane, these are (i) the region R1

including the semi-infinite intervals v � 0 and v � −2 and extending to complex infinity,
in which (with appropriate choices of branch cuts for the square roots) λ̄sqtor,2,1 is dominant,
(ii) the region R2 including the real interval −√

2 � v � 0, enclosed by the outer curve,
in which λ̄sqtor,2,3 is dominant and (iii) the region R3 enclosed by the innermost curve and
including the real interval −2 � v � −√

2, in which λ̄sqtor,2,6 = 1 is dominant. Corresponding
results hold in the Q plane.
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Figure 6. Locus BQ for the Potts model on a 2 × ∞ strip of the square lattice with toroidal or
Klein-bottle boundary conditions and with Q and v satisfying (4). Partition function zeros are
shown for a toroidal 2 × 40 strip.

Using our results in [5, 29], we have also performed similar calculations for the Ly = 3
strip of the square lattice with toroidal boundary conditions. We find that Bv crosses the real
axis at v = 0, v = −√

2, v = −2 and v 
 −5.2 and contains complex-conjugate curves
extending to complex infinity in the Re(v) < 0 half plane. Again, corresponding results hold
in the Q plane.

4. Strips of the triangular lattice

4.1. General

In order to investigate the lattice dependence of the loci B, we have also calculated these for
infinite-length strips of the triangular lattice with various boundary conditions and with Q and
v restricted to satisfy the phase transition condition for the two-dimensional triangular lattice,
(5). We construct a strip of the triangular lattice by starting with a strip of the square lattice
and adding edges connecting the vertices in, say, the upper left to the lower right corners of
each square to each other. Since we will find that the values Q2� for � = 1, . . . , Ly play an
important role for the loci BQ for these strips with periodic longitudinal boundary conditions,
just as they did for the corresponding square-lattice strips, we give a general solution of (5) for
the case where Q = Qr : the roots of this equation are −1+2 cos(2(r +η)π) with η = 1,−1, 0,
i.e., in order of increasing v,

vt1(r) = −1 + 2 cos

(
2(r + 1)π

3r

)
(27)

vt2(r) = −1 + 2 cos

(
2(r − 1)π

3r

)
(28)
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and

vt3(r) = −1 + 2 cos

(
2π

3r

)
. (29)

The relevant case here is r = 2� with 1 � � � Ly . More generally, for any real r � 2, these
roots have the properties

vt1(r) � vt2(r) � 0 for r � 2 (30)

(where the first equality holds only at r = ∞ and the second equality holds only at r = 2),

vt3(r) � 0 for r � 2 (31)

(where the equality holds only at r = 2). As r increases from 2 to ∞, (i) vt1(r) increases from
−3 to −2, (ii) vt2(r) decreases from 0 to −2 and (iii) vt3(r), which is the physical root for the
phase transition on the triangular lattice, increases from 0 to 1.

For the cases of interest here, with r = 2� and 1 � � � Ly , for widths up to Ly = 5, many
of the trigonometric expressions in equations (27)–(29) simplify considerably, to algebraic
expressions and in some cases to integers, so it is worthwhile displaying these roots explicitly.
For r = 2, 4, 6, we have

vt1(2) = −3, vt2(2) = 0, vt3(2) = 0 �⇒ Q = Q2 = 0

vt1(4) = −1 −
√

3, vt2(4) = −1, vt3(4) = −1 +
√

3
(32)

�⇒ Q = Q4 = 2 (33)

and vtj (6), j = 1, 2, 3 �⇒ Q = Q6 = 3, where

vt1(6) = −1 + 2 cos(7π/9) 
 −2.532 089 (34)

vt2(6) = −1 + 2 cos(5π/9) 
 −1.347 296 (35)

vt3(6) = −1 + 2 cos(π/9) 
 0.879 385. (36)

For r = ∞ we have

vt1(∞) = vt2(∞) = −2, vt3(∞) = 1

�⇒ Q = Q∞ = 4. (37)

It is straightforward to work out similar results for other values of r. (Outside of our range,
at r = 1, since Q1 = Q∞, (5) with Q = Q1 has the same set of roots as in (37), with
vt1(1) = vt3(1) = −2 and vt2(1) = 1.) Concerning the behaviour of the solutions of (5) with
v as the independent variable, as v decreases from 0, Q increases from 0, reaching a maximum
of 4 at v = −2 and then decreasing through 0 to negative values as v decreases through −3.
Thus, for all v in the interval −∞ � v � 0,Q is bounded above by the value 4.

4.2. Free strips

The exact solution for the partition function on the Ly = 2 strip of the triangular lattice with
free boundary conditions in [7] has the form of (8) with two λs. Setting Q = v2(v + 3) as in
(5), we find the corresponding reduced λ̄ s:

λ̄t,2,0,j = (v + 1)

2

[
v3 + 5v2 + 9v + 7 ± (v + 3)

√
(v + 1)(v3 + 3v2 + 3v + 5)

]
, (38)

where j = 1, 2 correspond to the ±.
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Figure 7. Locus Bv for the Potts model on a 2×∞ strip of the triangular lattice with free boundary
conditions and with Q and v satisfying (5). Partition function zeros are shown for a free 2 ×
20 strip.
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Figure 8. Locus BQ for the Potts model on a 2×∞ strip of the triangular lattice with free boundary
conditions and with Q and v satisfying (5). Partition function zeros are shown for a free 2 ×
20 strip.

In the limit m → ∞, we find the locus Bv shown in figure 7 consisting of the union of
(i) a curve that crosses the real v axis at v = −2 (a multiple point on the curve) and v = −3
and has endpoints at the two complex-conjugate roots of the cubic factor in the square root in
(38), v 
 −0.206 ± 1.37i and (ii) a line segment on the real v axis extending from v = −1
to 
 −2.587. These endpoints of the line segment are the other two zeros of the polynomial
in the square root in (38). This locus divides the complex v plane into two regions. The image
of this locus under the mapping (5), BQ, is shown in figure 8 and consists of the union of a
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Figure 9. Locus Bv for the Potts model on a 2 × ∞ strip of the triangular lattice with cyclic or
Möbius boundary conditions and with Q and v satisfying (5). Partition function zeros are shown
for a cyclic 2 × 20 strip.

closed curve passing through Q = 0 and Q = 4 with complex-conjugate arcs passing through
Q = 4 and terminating at endpoints Q 
 −4.38 ± 4.12i, and a line segment on the real axis
extending from Q = 2 to Q 
 2.762. In figures 7 and 8 we also show zeros calculated for
a long finite free Ly = 2 strip of the triangular lattice. One sees again that these lie close to
the asymptotic loci Bv and BQ, as one would expect for a long strip. There are also discrete
zeros that do not lie on (or close to) the equimodular curves B. We have already explained the
origin of the zero at (Q, v) = (0, 0). In contrast to the situation with free strips of the square
lattice, where the zero at v = 0 and its image at Q = 0 were both isolated, here we find that
for the free Ly = 2 strip of the triangular lattice (see figures 7 and 8), there is an isolated zero
at v = 0, but because of the non one-to-one nature of the mapping (5), its image in the Q plane
is not isolated but rather is on BQ. We have also performed analogous studies of wider strips
of the triangular lattice using the calculations of [30], and we find qualitatively similar results.

4.3. Cyclic and Möbius strips

For cyclic boundary conditions we have NZ,2,λ = 6, nZ(2, 0) = 2, nZ(2, 1) = 3, nZ(2, 2) = 1,
just as in the square-lattice case. We calculated the general partition function Z(t[2 × m],
cyc,Q, v) in [7], and this has the form of (10) with Ly = 2. Restricting Q and v to satisfy (5),
we obtain λ̄t,2,2 = 1, λ̄t,2,0,j for j = 1, 2 given in (38), and λ̄t,2,1,j for j = 1, 2, 3, which are
solutions to the equation

η3 − (v + 2)(3v + 4)η2 + (v + 2)(v + 1)(3v2 + 9v + 4)η − (v + 1)2(v2 + 3v + 1)2 = 0. (39)

In the limit m → ∞ for this cyclic strip (and for the same strip with Möbius boundary
conditions), we find the locus Bv shown in figure 9 and the corresponding locus BQ shown
in figure 10. These loci consists of closed curves that intersect the real v and Q axis at the
following points, where the value of Q is the image of the value of v under the mapping (5):
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Figure 10. Locus BQ for the Potts model on a 2 × ∞ strip of the triangular lattice with cyclic or
Möbius boundary conditions and with Q and v satisfying (5). Partition function zeros are shown
for a cyclic 2 × 20 strip.

(i) v = 0 and v = −3 ⇒ Q = Q2 = 0, (ii) v = −1 ⇒ Q = Q4 = 2 and (iii) v = −2 ⇒
Q = 4. The locus Bv also contains a line segment extending from v 
 −1.531 to v = −2,
and BQ contains its image under the mapping (5) extending from Q 
 3.44 to Q = 4.

The locus Bv separates the v plane into four regions, as is evident in figure 9:

• the region including the intervals v � 0 and v � −3 on the real v axis and extending to
complex infinity, in which (with appropriate definition of the branch cuts associated with
the square root in (38)) λ̄t,2,0,1 is dominant,

• the region including the neighbourhood to the left of v = 0 and excluding the interior
of the loop centred approximately around v = −1.2, in which one of the λ̄t,2,1,j s is
dominant,

• the region in the interior of the loop centred around v = −1.2, in which λ̄t,2,2 = 1 is
dominant,

• the region including the interval that extends from v = −2 to v = −3, in which another
λ̄t,2,1,j is dominant.

We give some specific dominant eigenvalues at special points. At v = 0, λ̄t,2,0,1 =
(7 + 3

√
5)/2, equal in magnitude to the dominant λ̄t,2,1,j . At v = −2, all of the six λ̄t,2,d,j s

are equal in magnitude and equal to unity. At v = −3, |λ̄t,2,0,j | = 2 for j = 1, 2, and two of
the |λ̄t,2,1,j | = 2, while the third is equal in magnitude to 1.

Correspondingly, the locus BQ divides the Q plane into five regions:

• the region including the intervals Q � 4 and Q � 0 on the real Q axis and extending to
infinity, in which λ̄t,2,0,1 is dominant,

• two complex-conjugate regions bounded at large Q by curves that cross the imaginary
axis at Q 
 ±8.23i, in which one of the λ̄t,2,1,j s is dominant,
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• the region including the interval 0 � Q � 2, in which another λ̄t,2,1,j is dominant,
• the region in the interior of the loop centred approximately around Q = 2.6, in which

λ̄t,2,2 = 1 is dominant.

We have performed similar calculations for cyclic strips of the triangular lattice with
greater widths, Ly = 3, 4, 5. We find that Bv crosses the negative real axis at vt2(2�) for
1 � � � Ly , so that BQ crosses the real axis at the image points under (5), Q2�. As with the
cyclic square-lattice strips with widths Ly � 3, we find that the outermost curves on BQ cross
the negative real axis; for example, for Ly = 3, such a crossing occurs at Q 
 −9.4.

4.4. Other strips of the triangular lattice

We have also calculated the partition function and the resultant loci Bv and BQ for strips of the
triangular lattice with cylindrical and toroidal boundary conditions. A general feature that we
find is that Bv passes through v = −2, and hence BQ passes through Q = 4. Other features
depend on the specific boundary conditions and width. One property that we encounter is
noncompactness of Bv and BQ (as was the case with the Ly = 3 toroidal strip of the square
lattice and for cyclic self-dual strips of the square lattice [15]).

5. Strips of the honeycomb lattice

We first give a general solution for the three roots in v of (6) with Q = Qr ; in order of
increasing value, these are

vhc1(r) = −4 cos
(π

r

)
cos

[
π

3

(
1

r
− 1

)]
(40)

vhc2(r) = −4 cos
(π

r

)
cos

[
π

3

(
1

r
+ 1

)]
(41)

and

vhc3(r) = 4 cos
(π

r

)
cos

( π

3r

)
. (42)

As r increases from 2 to ∞ and Qr thus increases from 0 to 4, (i) vhc1(r) decreases from
0 to a minimum of −9/4 at r = π/ arcsin(

√
10/8) 
 7.73 and then increases to −2; (ii)

vhc2(r) decreases monotonically from 0 to −2 and (iii) vhc3(r), the physical root, increases
monotonically from 0 to 4. As with the analogous expressions for the triangular lattice, it
is straightforward to work out simpler expressions to which equations (40)–(42) reduce for
special values of r; we omit the details here.

For this honeycomb lattice, substituting the value v = −2 into (6) yields two
solutions, Q = 2 and Q = 4. Using our general solutions for the partition functions
Z(hc[2 × m], free,Q, v) and Z(hc[2 × m], cyc,Q, v) in [8], we have checked that at
v = −2,Q = 4 there is degeneracy of dominant λs, so that these points are on the respective
loci Bv and BQ. This property is thus similar to the feature that we have found for strips of
the square and triangular lattices. For Ly = 2 cyclic honeycomb-lattice strips we find that,
in addition, the points v = 0,Q = Q2 = 0 and v = −2,Q = Q4 = 2 are on the respective
loci Bv and BQ. For the Ly = 3 cyclic strips of this lattice, Bv contains these points and also
vhc1(6) = −2

√
3 cos(5π/18), so that the image BQ contains the point Q = Q6 = 3. For all

the strips of this lattice that we have studied, with Ly up to Ly = 5, we find that Bv crosses
the real axis at v = vhc1(2�) for � = 1, . . . , Ly , so that BQ crosses the real Q axis at Q2� for
� = 1, . . . , Ly .
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6. Discussion and conclusions

In this paper, then, we have presented exact results for the continuous accumulation set B of
the locus of zeros of the Potts model partition function for the infinite-length limits of strips
of the square, triangular, and honeycomb lattices with various widths, a variety of boundary
conditions, and Q and v restricted to satisfy conditions (4), (5) and (6) for the ferromagnetic
phase transition on the corresponding two-dimensional lattices. In this section we give a
discussion of, and draw conclusions concerning, several features that are common to all of the
strips of the three types of lattices that we have analysed. These include the following:

• For all of the strips, including those of the square, triangular, and honeycomb lattices,
that we have studied where nontrivial continuous accumulation loci are defined (thus
excluding the 1 × m line graph with free boundary conditions), we find that Bv passes
through v = −2 and BQ passes through Q = 4, which is the image of v = −2 under both
of the mappings (4) and (5) and is a solution of (6) with v = −2.

• For all of the cyclic (and equivalently, Möbius) strips that we have studied, besides the
crossing at Q = 4,BQ crosses the real axis at

Q = Q2� for � = 1, . . . , Ly. (43)

We conjecture that this holds for arbitrarily large Ly . This locus can also cross the real
axis at other points, such as the crossings on the negative real axis that we found for
widths Ly � 3.

For the particular case of the cyclic square-lattice strips, these properties agree with a result in
[25], namely, that at Q = Q2�, |λsq,Ly ,�,max| = |λsq,Ly,�−1,max|, where λsq,Ly,�,max denotes the
eigenvalue λsq,Ly,�,j of largest magnitude.

We also observed that the points v = −2 and Q = 4 play a special role for self-dual strips
of the square lattice in [15]. It is interesting that for self-dual cyclic square-lattice strips, in
addition to the point Q = 4,BQ crosses the real axis at Q2�+1 for 1 � � � Ly . This set of
points is interleaved with those in (43). As we have noted in [15], these findings are in accord
with the fact that the Potts model at the values Q = Qr has special properties, such as the
feature that the Temperley–Lieb algebra is reducible at these values [24, 25, 31]. A related
fact is that complex-temperature phase diagrams of the Potts model show special properties
at Q = Qr . (In addition to the trivial cases Q = Q2 = 0 and Q = Q3 = 1 and the exactly
solvable Ising case Q = Q4 = 2, complex-temperature phase diagrams have been studied
for various Qr such as Q6 = 3 and Q1 = Q∞ = 4 [3–5, 7, 8, 27–30] and [32–39]). In
[15] we compared our exact results for B on infinite-length, finite-width cyclic self-dual strips
of the square lattice with calculations of partition function zeros for finite L × L sections of
the square lattice with Q = v2 in [40] with the same boundary conditions. For finite lattice
sections, there is, of course, no locus BQ defined, and hence one is only able to make a rough
comparison of patterns of zeros. In the calculation of zeros for the above-mentioned L × L

section of the square lattice with cyclic self-dual boundary conditions, e.g., for L = 8, a
number of zeros in the Q plane occur at or near to certain Qr s, and the zeros in the v and Q
planes exhibit patterns suggesting the importance of the points v = −2 and Q = 4. With our
results in the present paper, we can extend this comparison. We see that the importance of
v = −2 and Q = 4 for the pattern of partition function zeros for Q and v satisfying relation
(4) generalizes to square-lattice strips with a variety of boundary conditions, not necessarily
self-dual. Indeed, going further, our results show that the features we have observed are true
not just of the partition function on the square-lattice strips with Q = v2, but also on strips of
the triangular and honeycomb lattices with Q and v satisfying the analogous phase transition
conditions (5) and (6).



10294 S-C Chang and R Shrock

One interesting aspect of the findings in the present work and our paper [15] on infinite-
length, finite-width strips is the special role of the value Q = 4 for the loci BQ, which can
make a connection with the locus B for the physical phase transition of the Potts model on
two-dimensional lattices. In this context, we recall that the value Q = 4 is the boundary
between the interval 0 � Q � 4 where the paramagnetic to ferromagnetic phase transition of
the 2D Potts model is continuous (second order) and the interval Q > 4 where it is first order.
Although the Potts model (and more generally any spin model with finite-range spin–spin
interactions) has no finite-temperature phase transition on these quasi-one-dimensional strips,
it is, nevertheless, intriguing that if one restricts Q and v to satisfy the conditions corresponding
to the ferromagnetic phase transition on a square, triangular, or honeycomb lattice, then the
value Q = 4 plays a special role not only for the nature of the transition and associated
singularities on the infinite 2D lattice, but also for the singular locus B for infinite-length,
finite-width strips.
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